Supplement 3—Quantiles (Ch. 3)

Homework 3g. Refer to the data at right.

1. For variable x, find:
 a. Q_1
 b. Q_3
 c. P_{15}
 d. P_{27}
 e. P_{67}
 f. P_{95}

2. For variable y, find:
 a. median
 b. P_{25}
 c. P_{40}
 d. P_{55}
 e. P_{79}
 f. P_{85}

Quantile: The value that lies at a specified position in a data array.

Method: Step 1. Find the quantile position:

 \[\text{quantile position} = (n + 1) \times \text{quantile fraction} \]

 where n = number of observations
 quantile fraction = .25 for Q_1, .67 for P_{67}, etc.

 Step 2. If the result in step 1 is not a whole number, find the interpolated value of the quantile:

 \[\text{interpolated value} = \text{lower value} + [\text{upper value} - \text{lower value}] \times \text{excess fraction} \]

 where lower value, upper value = values of the variable falling just below and above the quantile position
 excess fraction = .32 if quantile position is 4.32, etc.

Example 1: Find P_{17} for variable x above.

Step 1. \[P_{17} \text{ position} = (15 + 1) \times .17 = 2.72 \text{th position} \]

*Now, of course there is no 2.72\text{th} value in the data set, so we must interpolate a value between the 2\text{nd} value (lower value = 3) and the 3\text{rd} value (upper value = 5) in step 2.

Step 2. \[\text{Interpolated value for } P_{17} = 3 + [(5 - 3) \times .72] = 4.44 \]
Hence, $P_{17} = 4.44$

Example 2: Find P_{25} for variable x above.

Step 1. \[P_{25} \text{ position} = (15 + 1) \times .25 = 4\text{th position} \]

*Since our result in step 1 is a whole number, no interpolation is needed. The value lying at the 4\text{th} position in the array of x is 5.
Hence, $P_{25} = 5$

Example 3: Find P_{85} for variable x above.

Step 1. \[P_{85} \text{ position} = (15 + 1) \times .85 = 13.6\text{th position} \]

*Our result in step 1 is not a whole number, BUT . . . values 13 and 14 in the array of x are both 12, so there's no need to interpolate.
Hence, $P_{85} = 12$

Example 4: Find P_{99} for variable x above.

Step 1. \[P_{99} \text{ position} = (15 + 1) \times .99 = 15.84\text{th position} \]

Hey! There are only 15 observations—what gives? Well, this is a quirk of applying our method to small data sets. Just set the P_{99} value equal to the maximum value of x, that is, 13.